Implicate and explicate order according to David BohmFrom Wikipedia, the free encyclopedia According to David Bohm's theory, implicate and explicate orders are characterised by:
[edit]David Bohm's challenges to some generally prevailing viewsIn proposing this new notion of order, David Bohm explicitly challenged a number of tenets that he believed are fundamental to much scientific work. Bohm challenges the ideas that:
Bohm’s proposals have at times been dismissed largely on the basis of such tenets, without due consideration necessarily given to the fact that they had been challenged by Bohm. Bohm’s paradigm is inherently antithetical to reductionism, in most forms, and accordingly can be regarded as a form of ontological holism. On this, Bohm noted of prevailing views among physicists: "the world is assumed to be constituted of a set of separately existent, indivisible and unchangeable 'elementary particles', which are the fundamental 'building blocks' of the entire universe … there seems to be an unshakable faith among physicists that either such particles, or some other kind yet to be discovered, will eventually make possible a complete and coherent explanation of everything" (Bohm 1980, p. 173). A hydrogen atom and its constituent particles: an example an over-simplified way of looking at a small collection of posited building blocks of the universe In Bohm’s conception of order, then, primacy is given to the undivided whole, and the implicate order inherent within the whole, rather than to parts of the whole, such as particles, quantum states, and continua. For Bohm, the whole encompasses all things, structures, abstractions and processes, including processes that result in (relatively) stable structures as well as those that involve metamorphosis of structures or things. In this view, parts may be entities normally regarded as physical, such as atoms orsubatomic particles, but they may also be abstract entities, such as quantum states. Whatever their nature and character, according to Bohm, these parts are considered in terms of the whole, and in such terms, they constitute relatively autonomous and independent "sub-totalities". The implication of the view is, therefore, that nothing isfundamentally separate or autonomous. Bohm 1980, p. 11 said: "The new form of insight can perhaps best be called Undivided Wholeness in Flowing Movement. This view implies that flow is, in some sense, prior to that of the ‘things’ that can be seen to form and dissolve in this flow". According to Bohm, a vivid image of this sense of analysis of the whole is afforded by vortex structures in a flowing stream. Such vortices can be relatively stable patterns within a continuous flow, but such an analysis does not imply that the flow patterns have any sharp division, or that they are literally separate and independently existent entities; rather, they are most fundamentally undivided. Thus, according to Bohm’s view, the whole is in continuous flux, and hence is referred to as the holomovement (movement of the whole). [edit]Quantum theory and relativity theoryA key motivation for Bohm in proposing a new notion of order was the well-known incompatibility of quantum theory with relativity theory. Bohm 1980, p. xv summarised the state of affairs he perceived to exist:
Bohm maintained that relativity and quantum theory are in basic contradiction in these essential respects, and that a new concept of order should begin with that towards which both theories point: undivided wholeness. This should not be taken to mean that he advocated such powerful theories be discarded. He argued that each was relevant in a certain context—i.e. a set of interrelated conditions within the explicate order—rather than having unlimited scope, and that apparent contradictions stem from attempts to overgeneralize by superposing the theories on one another, implying greater generality or broader relevance than is ultimately warranted. Thus, Bohm 1980, pp. 156–167 argued: "... in sufficiently broad contexts such analytic descriptions cease to be adequate ... 'the law of the whole' will generally include the possibility of describing the 'loosening' of aspects from each other, so that they will be relatively autonomous in limited contexts ... however, any form of relative autonomy (and heteronomy) is ultimately limited by holonomy, so that in a broad enough context such forms are seen to be merely aspects, relevated in the holomovement, rather than disjoint and separately existent things in interaction". [edit]Hidden variable theoryBohm proposed a hidden variable theory of quantum physics (see Bohm interpretation). According to Bohm, a key motivation for doing so was purely to show the possibility of such theories. On this, Bohm 1980, p. 81 said "... it should be kept in mind that before this proposal was made there had existed the widespread impression that no conceptions of hidden variables at all, not even if they were abstract, and hypothetical, could possibly be consistent with the quantum theory". Bohm 1980, p. 110 also claimed that "the demonstration of the possibility of theories of hidden variables may serve in a more general philosophical sense to remind us of the unreliability of conclusions based on the assumption of the complete universality of certain features of a given theory, however general their domain of validity seems to be". Another aspect of Bohm's motivation was to point out a confusion he perceived to exist in quantum theory. On the dominant approaches in quantum theory, he said: "...we wish merely to point out that this whole line of approach re-establishes at the abstract level of statistical potentialities the same kind of analysis into separate and autonomous components in interaction that is denied at the more concrete level of individual objects" (Bohm 1980, p. 174). [edit]The implicate order as an algebraDavid Bohm, his co-worker Basil Hiley and other physicists of Birkbeck college, University of London, worked towards representing the implicate order in form of an appropriate algebra or other pregeometry. They considered spacetime itself as part of an explicit order that is connected to an implicit order which they called pre-space. The spacetime manifold and properties of locality and nonlocality then arise from an order in such pre-space. A. M. Frescura and Hiley suggested that an implicate order could be carried by an algebra, with the explicate order being contained in the various representations of this algebra.[1] Frescura also suggested that the pregeometry could be defined by projective spinors.[2] [edit]Quantum entanglementCentral to Bohm's schema are correlations between observables of entities which seem separated by great distances in the explicate order (such as a particular electron here on earth and an alpha particle in one of the stars in the Abell 1835 galaxy, the farthest galaxy from Earth known to humans), manifestations of the implicate order. Within quantum theory there is entanglement of such objects. This view of order necessarily departs from any notion which entails signalling, and therefore causality. The correlation of observables does not imply a causal influence, and in Bohm's schema the latter represents 'relatively' independent events in space-time; and therefore explicate order. He also used the term unfoldment to characterise processes in which the explicate order becomes relevant (or "relevated"). Bohm likens unfoldment also to the decoding of a television signal to produce a sensibleimage on a screen. The signal, screen, and television electronics in this analogy represent the implicate order whilst the image produced represents the explicate order. He also uses an example in which an ink droplet can be introduced into a highly viscous substance (such as glycerine), and the substance rotated very slowly such that there is negligible diffusion of the substance. In this example, the droplet becomes a thread which, in turn, eventually becomes invisible. However, by rotating the substance in the reverse direction, the droplet can essentially reform. When it is invisible, according to Bohm, the order of the ink droplet as a pattern can be said to be implicate within the substance. In another analogy, Bohm asks us to consider a pattern produced by making small cuts in a folded piece of paper and then, literally, unfolding it. Widely separated elements of the pattern are, in actuality, produced by the same original cut in the folded piece of paper. Here the cuts in the folded paper represent the implicate order and the unfolded pattern represents the explicate order. [edit]The hologram as analogy for the implicate orderSee also: Holographic principle and Holographic paradigm Bohm employed the hologram as a means of characterising implicate order, noting that each region of a photographic plate in which a hologram is observable contains within it the whole three-dimensional image, which can be viewed from a range of perspectives. That is, each region contains a whole and undivided image. In Bohm’s words: There is the germ of a new notion of order here. This order is not to be understood solely in terms of a regular arrangement of objects (eg., in rows) or as a regular arrangement of events (e.g. in a series). Rather, a total order is contained, in some implicit sense, in each region of space and time. Now, the word 'implicit' is based on the verb 'to implicate'. This means 'to fold inward' ... so we may be led to explore the notion that in some sense each region contains a total structure 'enfolded' within it".[3] Bohm noted that although the hologram conveys undivided wholeness, it is nevertheless static. In this view of order, laws represent invariant relationships between explicate entities and structures, and thus Bohm maintained that in physics, the explicate order generally reveals itself within well-constructed experimental contexts as, for example, in the sensibly observable results of instruments. With respect to implicate order, however, Bohm asked us to consider the possibility instead "that physical law should refer primarily to an order of undivided wholeness of the content of description similar to that indicated by the hologram rather than to an order of analysis of such content into separate parts …".[4] [edit]Implicate orders in artIn the work Science, Order, and Creativity (Bohm and Peat, 1987), examples of implicate orders in science are laid out, as well as implicate orders which relate to painting, poetry, and music. The authors emphasize the role of orders of varying complexity, which influence the perception of a work of art as a whole. They note that implicate orders are accessible to human experience. They refer for instance to earlier notes which reverberate when listening to music, or various resonances of words and images which are perceived when reading or hearing poetry. [edit]A common grounding for consciousness and matterThe implicate order represents the proposal of a general metaphysical concept in terms of which it is claimed that matter and consciousness might both be understood, in the sense that it is proposed that both matter and consciousness: (i) enfold the structure of the whole within each region, and (ii) involve continuous processes of enfoldment and unfoldment. For example, in the case of matter, entities such as atoms may represent continuous enfoldment and unfoldment which manifests as a relatively stable and autonomous entity that can be observed to follow a relatively well-defined path in space-time. In the case of consciousness, Bohm pointed toward evidence presented by Karl Pribram that memories may be enfolded within every region of the brain rather than being localized (for example in particular regions of the brain, cells, or atoms). Bohm went on to say:
Bohm also claimed that "as with consciousness, each moment has a certain explicate order, and in addition it enfolds all the others, though in its own way. So the relationship of each moment in the whole to all the others is implied by its total content: the way in which it 'holds' all the others enfolded within it". Bohm characterises consciousness as a process in which at each moment, content that was previously implicate is presently explicate, and content which was previously explicate has become implicate.
[edit]Connections with other worksEpithelial Cells stained for keratin and DNA: such parts of life exist because of the whole, but also to sustain it Many have seen strong connections between his ideas and ideas traditionally associated with Eastern Philosophy and religion. Bohm himself seemed also to see such connections, as evidenced by his close relationship with Jiddu Krishnamurti. There are particularly strong connections to Buddhism. Some proponents of new age beliefs (such as shamanism) claim a connection with their belief systems as well. Bohm's ideas are also used in certain meditation practices.[citation needed] Bohm's views bear some similarities to those of Immanuel Kant, according to Wouter Hanegraaff. For example, Kant held that the parts of an organism, such as cells, simultaneously exist to sustain the whole, and depend upon the whole for their own existence and functioning.[citation needed] Kant also proposed that the process of thought plays an active role inorganizing knowledge, which implies theoretical insights are instrumental to the process of acquiring factual knowledge. Kant restricted knowledge to appearances only and denied the existence of knowledge of any "thing in itself," but Bohm believed that theories in science are "forms of insight that arise in our attempts to obtain a perception of a deeper nature of reality as a whole" (Bohm & Hiley 1993, p. 323). Thus for Bohm the thing in itself is the whole of existence, conceived of not as a collection of parts but as an undivided movement. In this view Bohm is closer to Kant's critic, Arthur Schopenhauer,[citation needed] who identified the thing in itself with the will, an inner metaphysical reality that grounds all outer phenomena. Schopenhauer's will plays a role analogous to that of the implicate order; for example, it is objectified (Bohm might say it is "made explicate") to form physical matter. And Bohm's concept that consciousness and matter share a common ground resembles Schopenhauer's claim that even inanimate objects possess an inward noumenal nature. In The World as Will and Representation, Schopenhauer (1819/1995) described this ground thus:
[edit]See also
[edit]Notes
[edit]References
[edit]Further reading[edit]External links
|
Home > Actualize Your Quantum Holographic Conscious Potential! > Holography > The Holographic Universe with Michael Talbot >